fb_thumb

Hearing Aids

A hearing aid is a device designed to improve hearing by making sound audible to a person with hearing loss. Hearing aids are classified as medical devices in most countries, and regulated by the respective regulations. Small audio amplifiers such as PSAPs or other plain sound reinforcing systems cannot be sold as "hearing aids". Early devices, such as ear trumpets or ear horns,[1][2] were passive amplification cones designed to gather sound energy and direct it into the ear canal. Modern devices are computerised electroacoustic systems that transform environmental sound to make it audible, according to audiometrical and cognitive rules. Modern devices also utilize sophisticated digital signal processing to try and improve speech intelligibility and comfort for the user. Such signal processing includes feedback management, wide dynamic range compression, directionality, frequency lowering, and noise reduction. Modern hearing aids require configuration to match the hearing loss, physical features, and lifestyle of the wearer. This process is called "fitting" and is performed by audiologists. The amount of benefit a hearing aid delivers depends in large part on the quality of its fitting. Almost all hearing aids in use in the US are digital hearing aids. Devices similar to hearing aids include the osseointegrated auditory prosthesis (formerly called the bone anchored hearing aid) and cochlear implant.

Hearing aids are incapable of truly correcting a hearing loss; they are an aid to make sounds more audible. The most common form of hearing loss for which hearing aids are sought is sensorineural, resulting from damage to the hair cells and synapses of the cochlea and auditory nerve. Sensorineural hearing loss reduces the sensitivity to sound, which a hearing aid can partially accommodate by making sound louder. Other decrements in auditory perception caused by sensorineural hearing loss, such as abnormal spectral and temporal processing, and which may negatively affect speech perception, are more difficult to compensate for using digital signal processing and in some cases may be exacerbated by the use of amplification. Conductive hearing losses, which do not involve damage to the cochlea, tend to be better treated by hearing aids; the hearing aid is able to sufficiently amplify sound to account for the attenuation caused by the conductive component. Once the sound is able to reach the cochlea at normal or near-normal levels, the cochlea and auditory nerve are able to transmit signals to the brain normally. Common issues with hearing aid fitting and use are the occlusion effect, loudness recruitment, and understanding speech in noise. Once a common problem, feedback is generally now well-controlled through the use of feedback management algorithms.